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Competitive reactions among three monomers over a catalytic surface

E. C. da Costa and W. Figueiredo*
Departamento de Fı´sica, Universidade Federal de Santa Catarina, 88040-900 Floriano´polis, SC, Brazil

~Received 28 May 1999!

We studied in this work a three-monomer reaction model on one- and two-dimensional lattices. We have
taken different reactivity rates among pairs of monomers and the reaction between two selected monomers was
forbidden. We have employed the mean field and the pair approximation to decouple the equations of motion
for the densities of single and pairs of monomers. We found the stationary states and the phase diagram of the
model. We have shown that, in two dimensions and within the pair approximation, there is a first-order
transition line between active and poisoned steady states.

PACS number~s!: 64.60.Kw, 64.60.Ht
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I. INTRODUCTION

Lattice models of catalytic reactions have attracted
creasing interest since the pioneering work of Ziff, Gula
and Barshad, known in the literature as the ZGB model@1#,
which mimics the oxidation of the carbon monoxide ove
metal surface. The phase diagrams of a variety of mod
considered in the recent years, through analytical and
merical simulations, exhibit absorbing states, that is, c
figurations from which the system cannot escape anym
@2#. In the ZGB surface reaction model, the CO and O2 mol-
ecules adsorb in a square lattice following the Langmu
Hinshelwood mechanism. The algorithm, which describ
the above reaction model, is characterized by the follow
steps:

~1! CO(g)1V→CO(a) ,
~2! O2(g)12V→2O(a) ,
~3! CO(a)1O(a)→CO2(g)12V,

where the labels g and a denote a gaseous phase an
adsorbed reactant on the surface, respectively.V indicates a
vacant site. The steps~1! and~2! represent the adsorption o
the reactant gases on the surface, and the step~3! the proper
reaction between nearest-neighbor CO and O species. In
adsorption controlled limit, only a single parameter is nec
sary to describe the whole process, which is taken as
relative adsorption rate of CO molecules, denoted byyCO.
The results of their simulation for the square lattice, sh
that the system exhibits two phase transitions between ac
and nonactive states: foryCO<y1, an O poisoned state i
found, and a CO poisoned state appears foryCO>y2 . A
reactive steady-state occurs fory1<yCO<y2, where a non-
zero number of vacant sites is present in the lattice. Aty1,
the densities of O and CO change continuously, while aty2
the same densities change abruptly, indicating a first-o
transition. Dickman@3#, employing the site and the pair ap
proximations, within the master equation approach, a
found the phase diagram for the ZGB model. In his p
approximation calculations the values determined fory1 and
y2 agree very well with the corresponding simulation valu

Bassler and Browne@4# introduced a monomer-monome
reaction model with three different monomer species. Th

*Electronic address: wagner@fisica.ufsc.br
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used static and dynamic Monte Carlo simulations to de
mine the phase diagram of the model for the linear cha
The model presents continuous and first-order phase tra
tions. In their ternary phase diagram, three absorbing ph
are found, and a small reactive region is present at the ce
of the diagram. The transitions between satured phases
discontinuous, but the transitions between the reactive s
and the absorbing states are continuous. For a descriptio
this model only two parameters are needed, and all the r
tion rates are identical for every pair of nearest neighbor p
of monomers. In a following paper@5# they also performed
mean-field calculations including up to triplets of adjace
sites. With this improvement in their calculations they we
able to show the appearance of a bicritical point at the en
the first-order line separating the two poisoned steady sta

In this paper we also consider a three monomer mode
a lattice in what we restrict the set of all possible reactio
We take different reactivity rates among pairs of monome
and a chosen reaction, for instance, betweenB andC mono-
mers is forbbiden to occur. That is, we assume thatA can
react with B and C, with different reactivity rates, but the
reactionB1C is not permitted. This is different from the
original work of Bassler and Browne@4# where the reaction
betweenB andC is also permitted and all the reactivity rate
are equal. We used the mean-field and the pair approxi
tion calculations, in order to obtain the stationary states
the phase diagram of the model. We have shown that, in
dimension, the mean-field and the pair approximation g
only a reactive phase at a single point, while in two dime
sions, and within the pair approximation, at the same sin
point of the one-dimensional case, we found a coexistenc
active and nonactive phases. In Sec. II, we introduce
model and present the mean field and pair approxima
calculations for the linear chain. In Sec. III, we extend o
previous analysis to the square lattice and we exhibit
phase diagram of the model. Finally, in Sec. IV, we pres
our conclusions.

II. MODEL AND LINEAR CHAIN CALCULATIONS

We consider a linear chain immersed in a reservoir
monomers of the typeA, B, andC. Each site of the lattice is
occupied by a single monomer or it is vacant. We define
monomer densitiespi5Ni /N, wherei denotesA, B, or C. Ni
1134 ©2000 The American Physical Society
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PRE 61 1135COMPETITIVE REACTIONS AMONG THREE MONOMERS . . .
andN are the number of sites occupied by monomers of
type i and the total number of sites of the lattice, resp
tively. We also have the obvious constraint:

pA1pB1pC1pv51, ~1!

wherepv is the fraction of vacant sites. We also defineyi as
being the probability that the next monomer arriving at t
lattice is of the typei. We haveyA1yB1yC51, and we
introduce the parameterr such thatyB5r (12yA). We as-
sume that theB and C monomers cannot react themselve
So, in the table below, we list the allowed reactions that
necessary to describe the evolution of the densities in the
approximation

A1v→Aads. A1v→AB↑12v B1v→AB↑12v
B1v→Bads. A1v→AC↑12v C1v→AC↑12v
C1v→Cads.

where, for instance,A1v→AB↑12v, means that theA
monomer arrives at a vacant site, and finds at least onB
monomer in its neighborhood. Then, they react forming
AB dimer, which leaves the lattice creating two new vac
sites.Aads denotes an adsorbedA monomer in the lattice.

We now introduce a new parameterb, which is related to
the probability ofA chooseB or C to react. Then, we define

PAB5
b

11b
, ~2!

PAC5
1

11b
, ~3!

wherePAB is the probability of theA andB reaction, in the
presence ofC. In this work, we need three independent p
rameters to describe the stationary states of the model,
is, yA ,r andb. In this way we obtain the following equation
for the time evolution of the densities:

dpA

dt
5pv$yA~pA1pv!22~yB1yC!@12~12pA!2#%, ~4!

dpB

dt
5pv@yB~12pA!22yApB

2 #22yApvpB

3S pA1pv1pC

b

11b D , ~5!

dpC

dt
5pv@yC~12pA!22yApC

2 #22yApvpC

3S pA1pv1pB

1

11b D . ~6!

Introducing the new variables,D5pB1pC ,d5pB2pC
and g5pA2pB2pC , we can write the above set of equ
tions in the following form:

dD

dt
5pv$~12yA!~12g2D!22yA@12~12D!2#%, ~7!
e
-

.
e
ite

e
t

-
at

dd

dt
5pv~2r 21!~12yA!~12g2D!22pvFyA

2 S b21

b11D
3~D22d2!2yAd~D22!G , ~8!

dg

dt
5pv~2yA21!. ~9!

It is easy to see that the steady states are given bypv50 or
yA51/2. The casepv50, means that the linear chain is com
pletely poisoned byA monomers orB andC monomers. We
studied the stability of the solutions of the above system
equations by linearizing them, and considering the eing
values associated with the Jacobian matrix. We found tha
yA.1/2, the lattice is poisoned byA monomers, while if
yA,1/2, the lattice is poisoned by theB andC monomers. In
the latter case, the relative amounts ofB and C monomers
depend on the values ofr, b and on the initial boundary
conditions. For the particular valueyA51/2, we found an
active state, for which the number of vacant sites is differ
from zero. In this case, the variableg is a constant of motion,
and it is given by the initial conditions. Then, we may eas
write the stationary density values. For instance, the valu
pA , at yA51/2, is given by

pA5
1

2
~21g2A22g2!. ~10!

The pB andpC concentrations depend on the values of thr
and b parameters. In particular, at the active steady s
yA51/2, it is easy to show that the equation

r 5
1

2
1

1

4 S b21

b11D S 22g2A22g2

A22g22g
D 2

~11!

gives equal values for the densities ofB and C monomers.
We show in Fig. 1, a plot of the above equation for thr
different initial conditions. Below each curve, the concent
tion of C monomers is greater than that ofB monomers,
while above it happens opposite.

We turn now to the pair approximation scheme for t
linear chain. In this approximation, we introduce the p
probability pi j that a randomly chosen nearest neighbor p
of sites are occupied byi and j monomers or that they ar
vacant. In the previous treatments of the method@3,5#, the
rate of change ofpi j was evaluated by counting the chang
in the number of nearest-neighbor pairs in a neighborhoo
sites centered on, and including, the center pair (i j ). Here,
we use a simplification of the method, where changes out
the center pair are ignored. We need to consider only
changes at a particular center pair@6#. In our case the pos
sible pairs of nearest-neighbors are shown below.

A B C v
A AA 3 3 Av
B 3 BB BC Bv
C 3 CB CC Cv
v vA vB vC vv
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The crosses mean that the corresponding pairs are forbb
because we are working in the adsorption-controlled lim
Then, we can write the following equations relating the de
sities of monomers and pairs:

pA5pAA1pAv , ~12!

pB5pBB1pBC1pBv , ~13!

pC5pCC1pCB1pCv , ~14!

pv5pvv1pvA1pvB1pvC . ~15!

The pair densities satisfy the constraint

15pvv1pAA1pBB1pCC12~pvA1pvB1pvC1pBC!.

~16!

In the next table, we exhibit all the possible transitions b
tween pairs.

From
To vv

vv
3

AA
3

BB
3

CC
3

vA
7

vB
9

vC
12

BC
3

vA 1 4 3 3 3 3 3 3

vB 2 3 5 3 3 3 3 15
vC 3 3 3 6 3 3 3 16
AA 3 3 3 3 8 3 3 3

BB 3 3 3 3 3 10 3 3

CC 3 3 3 3 3 3 13 3

BC 3 3 3 3 3 11 14 3

We have assigned arbitrary labels for the transition rates,
again the3 mean forbbiden transitions. For instance, t
equation of motion forpAA and forpBC are written as

FIG. 1. Plot of the active state,yA51/2, for a linear chain in the
site approximation, and for three different initial boundary con
tions. r is the ratio between the adsorption rates of theB and C
monomers, andb is the probability ofA chooseB or C to react.
Below each line the density ofC monomers is greater than that ofB
monomers. The initial conditions areg520.5, continuous line;
g50, dotted line;g50.5, dashed line.
en
t.
-

-

nd

dpAA

dt
52T822T4 , ~17!

dpBC

dt
5T111T142T152T16, ~18!

whereT1 to T16 are the transition rates. The expressions
the transition ratesTi are very simple ones in one dimensio
For instance, the transition rate for the processBB→vB, is
given by

T55yApBB

pvB

pB
S pvv1pvA

pv
1

pvB

2pv
1

pvC

pv

b

11b D . ~19!

Contrarily to the mean-field calculations, we cannot o
tain analytical results in this pair approximation. We solv
our set of seven nonlinear coupled equations by the fou
order Runge-Kutta method, and we analyzed the stability
the solutions. The results we have obtained for the station
states are very similar to those found in the site approxim
tion. If yA,1/2, the linear chain is poisoned byB and C
species, whose densities depend on the values ofr andb. If
yA.1/2, the coverage is due only toA monomers. In this
pair approximation we also find an active state atyA51/2.
Aside small numerical differences, the plot we obtain in th
approximation is quite similar to that of Fig. 1. For instanc
in the active state,yA51/2, the concentration ofA monomers
is larger than that found in the site approximation. Howev
as we will show in the next section, the site and the p
approximations give, atyA51/2, qualitatively different re-
sults when applied to the square lattice.

III. SQUARE LATTICE CALCULATIONS

Now the monomersA, B and C can sit on the sites of a
square lattice. The model we consider is the same one s
ied in the previous section. However, to take into account
different number of neighbors ofB andC monomers around
at an arrivingA monomer, we rewrite the following relation
for the probability ofA choose anyB or C:

PAB5
bNB

NC1bNB
, ~20!

PAC5
NC

NC1bNB
, ~21!

whereNB and NC are the numbers ofB and C monomers,
respectively, which are nearest neighbors of an arrivingA
monomer. Again, the parameterb is related to the probabil-
ity of A choose a selectedB or C to react. Also, in two
dimensions, the possible reactions and the possible pairs
the same which appeared in the one-dimensional calc
tions. Following the same steps, as in the linear chain ca
lations, we can write the following time evolution equatio
for the densities:

dD

dt
5pv$~12yA!~12g2D!42yA@12~12D!#%, ~22!

-
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dd

dt
5pv~2r 21!~12yA!~12g2D!41pvyA

d

2
@D326D2

1D~d2112!#2pvyA@d~d214!2c#, ~23!

dg

dt
5pv~2yA21!, ~24!

wherec is given by

c5
3

8
~D22d2!~9D2216D2d218!S b21

b11D1
3

2
~12D!

3~D1d!~D2d!2S b22

b12D1
1

4
~D1d!~D2d!3S b23

b13D
1

3

2
~12D!~D2d!~D1d!2S 2b21

2b11D1
1

4
~D2d!

3~D1d!3S 3b21

3b11D . ~25!

The stationary states are given bypv50, and the stability
conditions assert that, ifyA,1/2, the lattice will be covered
by B and C species, while, ifyA.1/2, the lattice will be
poisoned by onlyA monomers. For the particular caseyA
51/2 we get an active stationary state. If we putd50, which
means equality of theB and C densities at the active state
then we arrive at an equationr (b), which is drawn, for three
different initial conditions, in Fig. 2. Each line in this figur
separates the regions which are richer in theB or C species.
Below each curve, the concentration ofC monomers is
greater than the concentration ofB monomers.
Finally, we briefly describe the pair approximation for th
square lattice. Following the same reasoning of the previ
section, we arrive at the equations of motion for the p
densities, as a function of the transition ratesTi . However,
in this case, theTi expressions are very lengthy. For in
stance, the expression for theT5 transition rate is

T55yApBB

pvB

pB
~2 f 1g!, ~26!

where

FIG. 2. Same legend as Fig. 1, except that the deposition
monomers is over a square lattice.
f 5
pvB

pB
S pvv1pvA

pv
D 2

1
pBB

2pB
S pvv1pvA

pv
D 2

1
2b

112b S pvv1pvA

pv
D S pBB

pB

pvC

pv
1

pBC

pB

pvB

pv
D1

pvB
2

pvpB
S pvv1pvA

pv
D

1
2b

112b

pvB
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pvB

pv

pvC

pv
1

b

11b

pvC

pv
S pBB

2pB

pvC

pv
1

pvB

pv

pBC

pB
D1

pvB
2

3pv
2

pvB

pB
1

b

113b

pvB

pv
S pvB

pv

pBC

pB
12

pBB

pB

pvC

pv
D

1
2pBB

3pB

pvB

pv
S pvv1pvA

pv
D1

pvB
2

4pv
2

pBB

pB
1

b

11b

pBC

pB
S pvv1pvA

pv
D 2

1
b

31b

pvC
2

pv
2

pBC

pB
1

2b

11b

pvB

pB

pvC

pv
S pvv1pvA

pv
D

1
b

21b

pvC

pv
FpvB

pB

pvC

pv
12

pBC

pB
S pvv1pvA

pv
D G ~27!

and

g5S pvv1pvA

pv
D 3

1
3b

11b

pvC

pv
S pvv1pvA

pv
D 2

1
3pvB

pv
F 2b

112b

pvC

pv
S pvv1pvA

pv
D G1

3pvB
2

pv
2 F1

3 S pvv1pvA

pv
D1

b

113b

pvC

pv
G1

pvB
3

4pv
3

1
3b

21b

pvC
2

pv
2 S pvv1pvA

pv
D1

b

31b

pvC
3

pv
3

1
3b

212b

pvB

pv

pvC
2

pv
2

1
3pvB

2pv
S pvv1pvA

pv
D 2

. ~28!
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Again, we solved the system of seven non-linear rate eq
tions by the fourth-order Runge-Kutta method, and we st
ied the stability of the possible solutions. We also found th
for yA,1/2, the steady states are poisoned states ofB andC
monomers, while foryA.1/2, the square lattice is poisone
by A monomers. The interesting situation arises foryA
51/2. The site approximation gives only active states, wh
in the pair approximation, we found a phase diagram in
planer versusb exhibiting active and nonactive states, sep
rated by a first-order transition line. This is indicated in F
3 by the dashed line. This result is completely different fro
the one we have obtained in our one-dimensional calculat
At the special pointyA51/2, in one dimension, only an ac
tive phase was found.

FIG. 3. Phase diagram for the square lattice, atyA51/2, show-
ing active and nonactive steady states in the pair approxima
The line between the steady states is a first-order transition lin
s

a-
-

t,

e
e
-
.

n.

IV. CONCLUSIONS

We have considered a three monomer reaction model
linear chain and on a square lattice. The reaction rates am
monomers were arbitrarily taken, and a selected reac
(B1C) was forbbiden to occur. We determined the ra
equations for the densities of monomers and vacant site
well as, for the densities of all nearest neighbor pa
through the master equation and employing the site and
pair approximations. We found active and nonactive ste
states, and studied their stabilities. In one dimension,
found a reactive state only for a single value of the depo
tion rate (yA51/2) of theA monomer. The results we found
within the site and pair approximations, do not differ
much in the linear chain model. This one-dimensional mo
cannot be thought as being a particular case of the Bas
and Browne model@4#, because here we prohibited the rea
tion between the monomersB and C. While the model of
Bassler and Browne is symmetrical relative to all the p
sible reactions, our model is an assymetrical one. Due to
fact, they found a clear reactive window in their phase d
gram, while our model exhibits a reactive steady state onl
the single pointyA51/2.

On the other hand, in two dimensions and in the p
approximation, we found a phase diagram, at the spe
value yA51/2, showing active and nonactive states. T
phase diagram, in the plane relative adsorption rate of thB
and C monomers,r, versus probability of reaction of thes
two monomers with theA monomer,b, exhibits a first-order
transition line. This phase transition does not appear in
site approximation, where, atyA51/2, only an active state is
present.
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