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Competitive reactions among three monomers over a catalytic surface
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We studied in this work a three-monomer reaction model on one- and two-dimensional lattices. We have
taken different reactivity rates among pairs of monomers and the reaction between two selected monomers was
forbidden. We have employed the mean field and the pair approximation to decouple the equations of motion
for the densities of single and pairs of monomers. We found the stationary states and the phase diagram of the
model. We have shown that, in two dimensions and within the pair approximation, there is a first-order
transition line between active and poisoned steady states.

PACS numbe(s): 64.60.Kw, 64.60.Ht

[. INTRODUCTION used static and dynamic Monte Carlo simulations to deter-

Lattice models of catalytic reactions have attracted i”';nﬁgenigze?hﬁieﬂ{as g;?)rgtir?zéti ;nn%dﬁlrgﬁ (r)rtgeer Imheai,rectrr]::]r;i-
creasing interest since the pioneering work of Ziff, Gulari, P P

and Barshad, known in the literature as the ZGB madé tions. In their ternary phase _diagram, t_hree absorbing phases
which mimics the oxidation of the carbon monoxide over a@r€ found, and a small reactive region is present at the center
metal surface. The phase diagrams of a variety of model8f the diagram. The transitions between satured phases are
considered in the recent years, through analytical and nwdiscontinuous, but the transitions between the reactive state
merical simulations, exhibit absorbing states, that is, conand the absorbing states are continuous. For a description of
figurations from which the system cannot escape anymorthis model only two parameters are needed, and all the reac-
[2]. In the ZGB surface reaction model, the CO androl-  tion rates are identical for every pair of nearest neighbor pair
ecules adsorb in a square lattice following the Langmuir-of monomers. In a_follovying p.ap¢5] they glso performed
Hinshelwood mechanism. The algorithm, which describe@ean-fleld ce_llcglatlons mcluc_ilng up to tnple_ts of adjacent
the above reaction model, is characterized by the followingpites. With this improvement in their calculations they were

steps: able to show the appearance of a bicritical point at the end of

the first-order line separating the two poisoned steady states.

(;) 8(2)(9)+;/—>C20C§a) ' In this paper we also consider a three monomer model on
(2) 02(g)+2V—20(a), a lattice in what we restrict the set of all possible reactions.
(3) CO(a)+0O(a)—C0O2(g)+2V, We take different reactivity rates among pairs of monomers,

where the labels g and a denote a gaseous phase and &nd a chosen reaction, for instance, betwBeand C mono-
adsorbed reactant on the surface, respectivéiydicates a mers is forbbiden to occur. That is, we assume #hatan
vacant site. The stegd) and(2) represent the adsorption of react withB and C, with different reactivity rates, but the
the reactant gases on the surface, and the(8lefe proper reactionB+C is not permitted. This is different from the
reaction between nearest-neighbor CO and O species. In tiasiginal work of Bassler and Brownet] where the reaction
adsorption controlled limit, only a single parameter is necesbetweenB andC is also permitted and all the reactivity rates
sary to describe the whole process, which is taken as thare equal. We used the mean-field and the pair approxima-
relative adsorption rate of CO molecules, denotedyly.  tion calculations, in order to obtain the stationary states and
The results of their simulation for the square lattice, showthe phase diagram of the model. We have shown that, in one
that the system exhibits two phase transitions between activdimension, the mean-field and the pair approximation give
and nonactive states: farco=<y;, an O poisoned state is only a reactive phase at a single point, while in two dimen-
found, and a CO poisoned state appearsyfgs=y,. A  Sions, and within the pair approximation, at the same single
reactive steady-state occurs fpr<yco<Y,, where a non- point of the one-dimensional case, we found a coexistence of
zero number of vacant sites is present in the latticeyAt active and nonactive phases. In Sec. I, we introduce the
the densities of O and CO change continuously, whilg,at model and present the mean field and pair approximation
the same densities change abruptly, indicating a first-ordegalculations for the linear chain. In Sec. Ill, we extend our
transition. Dickmar{3], employing the site and the pair ap- previous analysis to the square lattice and we exhibit the
proximations, within the master equation approach, als®hase diagram of the model. Finally, in Sec. IV, we present
found the phase diagram for the ZGB model. In his pairour conclusions.
approximation calculations the values determinedyfoand
y, agree very well with thg corresponding simulation values. Il. MODEL AND LINEAR CHAIN CALCULATIONS
Bassler and Browng4] introduced a monomer-monomer
reaction model with three different monomer species. They We consider a linear chain immersed in a reservoir of
monomers of the typd, B, andC. Each site of the lattice is
occupied by a single monomer or it is vacant. We define the
*Electronic address: wagner@fisica.ufsc.br monomer densitiep;=N; /N, wherei denotesA, B, or C. N;
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andN are the number of sites occupied by monomers of the (s yalB—1
type i and the total number of sites of the lattice, respec- a=pv(2r—1)(l—yA)(1—7—A)2—p\, 2\ ¥l
tively. We also have the obvious constraint:

PatPetPctP,=1, (1) X(Az—éz)—yAé(A—D}, ®

wherep, is the fraction of vacant sites. We also defineas

being the probability that the next monomer arriving at the Y

lattice is of the typei. We havey,+yg+Yyc=1, and we gt~ Pv(2ya—1). ©
introduce the parametersuch thatyg=r(1-y,). We as-

sume that theB and C monomers cannot react themselves.; ;g easy to see that the steady states are givep,by0 or

So, in the table below, we list the allowed reactions that arg, _ 1/2 "The cas@, =0, means that the linear chain is com-
necessary to describe the evolution of the densities in the Si%etely poisoned b;\ ménomers oB andC monomers. We

approximation studied the stability of the solutions of the above system of
equations by linearizing them, and considering the eingen-
A+V—Aads A+v—ABT+2v B+v—ABT+2v \ajues associated with the Jacobian matrix. We found that if
B+v—Bags A+v—ACT+2v C+v—ACT+2v  y,>1/2, the lattice is poisoned b\ monomers, while if
C+v—Cyqys ya<1/2, the lattice is poisoned by tilzandC monomers. In
the latter case, the relative amountsBfind C monomers

where, for instanceA+v—AB7]+2v, means that theA  depend on the values of B and on the initial boundary
monomer arrives at a vacant site, and finds at leastBne conditions. For the particular valug,=1/2, we found an
AB dimer, which leaves the lattice creating two new vacanfTom zero. In this case, the variabjés a constant of motion,

We now introduce a new paramef@rwhich is related to  Write the stationary density values. For instance, the value of
the probability ofA chooseB or C to react. Then, we define Pa. atya=1/2, is given by

1
]‘[AB:L, 2) pA:§(2+’)’_\/2_?’2)- (10
1+
1 The pg andpc concentrations depend on the values ofithe
HAC:W’ ©) and B parameters. In particular, at the active steady state
ya=1/2, it is easy to show that the equation

wherell g is the probability of theA andB reaction, in the B  pT2\2
presence ofC. In this work, we need three independent pa- r= e e 2=y N2~y (11)
rameters to describe the stationary states of the model, that 2 4\Bt1l]\ J2—y2—y
iS,Ya,r andg. In this way we obtain the following equations
for the time evolution of the densities: gives equal values for the densities Bfand C monomers.

We show in Fig. 1, a plot of the above equation for three

different initial conditions. Below each curve, the concentra-

tion of C monomers is greater than that Bf monomers,

while above it happens opposite.

dpg 5 ) We turn now to the pair approximation scheme for the

ot~ PulYe(1=Pa)"=YaPe]—2yaPyPs linear chain. In this approximation, we introduce the pair
probability p;; that a randomly chosen nearest neighbor pair

d
% =pu{Ya(Pat Py = (Ya+Yc)[1—(1—pa)?l}, (4)

of sites are occupied byandj monomers or that they are
X\ Pat pv+pcm), (3 vacant. In the previous treatments of the meth®d)], the
rate of change op;; was evaluated by counting the changes
dpe , , iq the number of nearesj[-neighbor pairs in a ngighborhood of
szv[yc(l—pA) —YaP&]—2yaPvPc sites cente_red on, gnd including, the center pgiy.(Here, .
we use a simplification of the method, where changes outside
1 the center pair are ignored. We need to consider only the
X Patpy+ psm)- (6)  changes at a particular center pgdil. In our case the pos-

sible pairs of nearest-neighbors are shown below.
Introducing the new variablesA =pg+ pc,0=pg—Pc

and y=pa—pg—Pc, We can write the above set of equa- A B C v
tions in the following form: A AA X X Av
B X BB BC Br
dA Cc X CB CC 6y
P _ —V— A2 (1 A2
Gr =AY (L= y= A=y [1-(1-8P), () oA e o o
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0.50 - . dpaa
_ gt 2Te=2Ta 17
0.48
dpsc
“at -~ Tut T Tis— Tae, (18
0.464 .~
whereT; to T4 are the transition rates. The expressions for
oo the transition rate$; are very simple ones in one dimension.
For instance, the transition rate for the procB&—vB, is
given by
0.42
+
TSZyApBB% Pvv T Pva + Pvs + Pvc ,3 (19)

Ps Py 2p, py 1+8/)°

0.40

o o2 oa o o8 1o Contrarily to the mean-field calculations, we cannot ob-
tain analytical results in this pair approximation. We solved
ﬁ our set of seven nonlinear coupled equations by the fourth-
order Runge-Kutta method, and we analyzed the stability of
FIG. 1. Plot of the active statg,=1/2, for a linear chain in the  the solutions. The results we have obtained for the stationary
site approximation, and for three different initial boundary condi- states are very similar to those found in the site approxima-
tions. r is the ratio between the adsorption rates of BvandC  tjon. If y,<1/2, the linear chain is poisoned B and C
monomers, ang3 is the probability ofA chooseB or C to react. species, whose densities depend on the valuesaati 8. If
Below each line the density @& monomers is greater than that®f ya>1/2, the coverage is due only # monomers. In this
monomers. The initial condition§ arg=—0.5, continuous line; pair approximation we also find an active stateygt 1/2.
=0, dotted line;y=0.5, dashed line. Aside small numerical differences, the plot we obtain in this

The crosses mean that the corresponding pairs are forbbid aﬁproximation is quite similar to that of Fig. 1. For instance,
S P 9gp PI0EH the active statey,= 1/2, the concentration & monomers
because we are working in the adsorption-controlled limit..

Then, we can write the following equations relating the dendS larger than that found in the site approximation. However,

sities of monomers and pairs: as we will show in the next section, the site and the pair
pairs: approximations give, ay,=1/2, qualitatively different re-

PA=Paat Pay s (12) sults when applied to the square lattice.
Pe=Pss+ Pect Pay (13) Ill. SQUARE LATTICE CALCULATIONS
_ n N (14) Now the monomer#\, B and C can sit on the sites of a
Pc=Pcc™Pes™Pey. square lattice. The model we consider is the same one stud-
ied in the previous section. However, to take into account the
pv: pvv+ va+ po+ va . (15)

different number of neighbors @& andC monomers around
at an arrivingA monomer, we rewrite the following relations

The pair densities satisfy the constraint for the probability ofA choose anyB or C:

1=p,,+pPaatPeetPcct2(Pyat Pvet PyctPeo)-

(16) T =E—NB (20)
A% Ne+BNg'
In the next table, we exhibit all the possible transitions be-
tween pairs. N
HAC:ma (21)
W vw AA BB CC vA vB vC BC c e
Tovv XXX x99 12 X whereNg and N¢ are the numbers d8 and C monomers,
VA 1 4 xooX roxo XX respectively, which are nearest neighbors of an arriving
vB 2 X 5 X X X X 15  monomer. Again, the parametgris related to the probabil-
vC 3 X X 6 X X X 16 ity of A choose a selecteB or C to react. Also, in two
AA X X X X 8 X X X dimensions, the possible reactions and the possible pairs are
BB X X X X X 10 X X the same which appeared in the one-dimensional calcula-
cc X X X X X X 13 X tions. Following the same steps, as in the linear chain calcu-
BC % X % % % 11 14 x lations, we can write the following time evolution equations

for the densities:

We have assigned arbitrary labels for the transition rates, and
again thex mean forbbiden transitions. For instance, the a2 _ B  ANAL a4
equation of motion fop,, and forpgc are written as dt PAL=YA (1= y=4)"=yal1=(1- )]} (22)
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d 5
Gt = P2 =D (=Y (1= y=A) 4 pyyaz[A%-6A2
+A(8°+12)]-pyyal 8(8°+4) = 4], (23
dt :pv(ZyA_l)l (24)
where s is given by
3 B—1\ 3
¢=g(AZ—52)(9A2—16A—52+8)([m +5(1-4)
B—2 B-3
X (A+ 8)(A—6)? B2 + = (A+5)(A 5)3 53
3 AVA R 2(25—1 1 A
+5(1-A)(A=H)(A+9) 25+ 1 +t4(8=9)
38-1
X (A+6)2 3571 (25)

The stationary states are given py=_0, and the stability
conditions assert that, ifa<<1/2, the lattice will be covered
by B and C species, while, ify,>1/2, the lattice will be
poisoned by onlyA monomers. For the particular cagg
=1/2 we get an active stationary state. If we putO, which
means equality of th® and C densities at the active state,
then we arrive at an equatioii3), which is drawn, for three
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FIG. 2. Same legend as Fig. 1, except that the deposition of
monomers is over a square lattice.

Finally, we briefly describe the pair approximation for the
square lattice. Following the same reasoning of the previous
section, we arrive at the equations of motion for the pair
densities, as a function of the transition rales However,
in this case, thel; expressions are very lengthy. For in-
stance, the expression for tig transition rate is

different initial cond|t|0ns,_|n Fig. 2 Eac_h line in this f_|gure T5:yApBB£(2f+g)1 (26)
separates the regions which are richer in Bher C species. Pe
Below each curve, the concentration 6f monomers is
greater than the concentration Bfmonomers. where
P (Pwt pﬂi@ Pt va)2+ 2B [pwt va) Pes Puc | Pac pvs)+ Pie [PwtPua
Ps Py 2pB Py 1+2B Py Ps Py Ps Py PvPs Py
28 PwePEPc, B va( Pes Pvc  Pus pBC) Pls Pus B po(po Pec . Pes va)
+— —+— —t — =+t —F— —+2—
1+2:8 Pe Pv Py l+,3 Pv 2pB Pv Pv Ps 3p Ps 1+3B Pv \ Pv Ps Ps Py
2Pgs Pvs [ Pw T Pua| . Pis Pes B @(pwﬂom B pic Psc | 2B Pus Puc(PuwtPua
3ps Py Py 4p2 ps 1+ pe Py 3+B p2 Ps 1+8 ps Py Py
ﬁ Pvc|Pve Pvc pBC(pvv+va)
458 Vv VA 2
2+B Py [ Ps Py Ps Py ( 7)
and
_ pvv'i_va)3 3:8 Pvc [ Puwt Pya 2 3po ZB Pvc [ Puwt Pya 3po Pvyt Pva B Pvc p\:jB
= + +
Pv 1+8 p, Pv Pv 1+2p Pv Pv pv 3 Py 1+3p Pv 4p\3,
3B p\2/C pvv+va B & 3B %pLZC 3po pvv+va 2 (28)
248 p2 | by 3+B pd 2t2Bp, pz  2p, | By
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1.0 IV. CONCLUSIONS

We have considered a three monomer reaction model on a
linear chain and on a square lattice. The reaction rates among
monomers were arbitrarily taken, and a selected reaction
(B+C) was forbbiden to occur. We determined the rate
| equations for the densities of monomers and vacant sites, as
064 well as, for the densities of all nearest neighbor pairs,
] nonactive f active through the master equation and employing the site and the
r pair approximations. We found active and nonactive steady
0.4 states, and studied their stabilities. In one dimension, we

’ found a reactive state only for a single value of the deposi-

0.8 4

/ tion rate (/o= 1/2) of theA monomer. The results we found,
0.2 within the site and pair approximations, do not differ so
! much in the linear chain model. This one-dimensional model
cannot be thought as being a particular case of the Bassler
0.0 : Sl and Browne moddl4], because here we prohibited the reac-
0.0 0.2 04 06 08 1.0 tion between the monomeR and C. While the model of
Bassler and Browne is symmetrical relative to all the pos-
sible reactions, our model is an assymetrical one. Due to this
FIG. 3. Phase diagram for the square latticey at 1/2, show-  fact, they found a clear reactive window in their phase dia-
ing active and nonactive steady states in the pair approximatiorgram, while our model exhibits a reactive steady state only at
The line between the steady states is a first-order transition line. the single pointy,=1/2.
On the other hand, in two dimensions and in the pair
Again, we solved the system of seven non-linear rate equapproximation, we found a phase diagram, at the special
tions by the fourth-order Runge-Kutta method, and we studvalue y,=1/2, showing active and nonactive states. The
ied the stability of the possible solutions. We also found thatphase diagram, in the plane relative adsorption rate oBthe
for ya<1/2, the steady states are poisoned stat&saidC  and C monomersy, versus probability of reaction of these
monomers, while foly,>1/2, the square lattice is poisoned two monomers with th& monomer,3, exhibits a first-order
by A monomers. The interesting situation arises fgr  transition line. This phase transition does not appear in the
=1/2. The site approximation gives only active states, whilesite approximation, where, g =1/2, only an active state is
in the pair approximation, we found a phase diagram in theresent.
planer versusg exhibiting active and nonactive states, sepa-
rated by a first-order transition line. This is indicated in Fig.
3 by the dashed line. This result is completely different from ACKNOWLEDGMENTS
the one we have obtained in our one-dimensional calculation. This work was partially supported by the Brazilian agen-
At the special point/,=1/2, in one dimension, only an ac- cies CAPES and CNPq. We also acknowledge the very help-
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